Welcome to

Conference

January 28–30, 2025 Santa Clara Convention Center

Expo

January 29-30, 2025

Delta-L Measurement Analysis: Extending PCB Trace Insertion Loss Measurements to 67 GHz

James Drewniak Clear Signal Solutions, Inc.

james.drewniak@clearsig.com

Contributors

- Xiaoning Ye Intel
- Richard Zai PacketMicro
- Giorgi Tsintsadze Missouri S&T EMC Laboratory (now at Cisco)
- John Cheng PacketMicro

Delta-L 4.0 Methodology – to 40 GHz

2", 5", 10" trace lengths used for IL extraction

Test Vehicle with PacketMicro Probes and Bases

Universal Probe Launch with PacketMicro Probes

Workflow Implemented in Commercial Toolsets

R&S®ZNB40 setup with Delta-L 4.0 probes

Delta-L Workflow for 2L on R&S®ZNB40

Advanced Interconnect Test Tool (AITT) – DLP (Clear Signal Solutions)

Next Step – Delta-L to 67 GHz

- Want to achieve 56 GHz over 1 lane for 224 Gbps data rate/PAM4, PCIE gen 7 128 GT/s over 1 lane
- Need to achieve 67 GHz for Delta-L method
 - using hand-held probes for use in large-volume measurements and in fabrication environment
 - Must have a universal footprint to accommodate handheld probes and rapid alignment/placement
 - 0.4 mm most likely a minimum probe pitch for rapid alignment due to manufacturing tolerance in PCB fab
- Must have trace pattern lengths for Delta-L to meet IEEE 370 STD for de-embedding accuracy e.g., 1" & 4", 2" & 5"?

Delta-L 4.0 (to 40 GHz) Solution

Universal Probe Launch with PacketMicro Probes

Probing Solution to 67 GHz

- Optimize probe and via transition simultaneously to achieve a RL>6dB at 67 GHZ
- Achieve an IL < 6 dB at 67 GHz by using shorter 2X Thru

PacketMicro GSSG probe Booth 1155

Status – PacketMicro Probes

Probe properties:

- 0.5 mm pitch
- GSSG configuration
- 3-mil robust probe tips
- 47-mil Coaxial cable
- 1.85mm Samtec connector
- Stainless base

PacketMicro GSSG probe

Booth 1155

Status – 67 GHz GSSG Probes on Microstrip - TDR

Status – 67 GHz GSSG Probes on Microstrip – Delta-L

Status – 67 GHz GSSG Probes on Stripline – TDR

Status – 67 GHz GSSG Probes on Stripline – Delta-L

Input

- RL and IL for 2X thru cross at 44 GHz and does not comply with IEEE 370
- Via transition not optimized and has a remaining via stub

Uncertainty Report (L1-L2)

Outline

- The Intel Delta-L Methodology
 - Test methodology
 - Eigenvalue de-embedding
 - Curve-fitting insertion loss
 - Design and de-embedding essentials for achieving a high-quality outcome at high-frequencies
- Some essentials
 - Making accurate S-parameter measurements
 - Determining the reference plane for high-quality de-embedding
 - causality/passivity
- Mitigating design and layout artifacts in the curve-fitting for IL
- 67 GHz Delta-L

Delta-L References Planes

Figure 1-1 Reference Planes in Printed Board Insertion Loss Characterization

Figure 1-2 Reference Planes in Printed Board Insertion Loss Characterization with Microwave Probe

Reference planes in all cases are TEM because they are at transmission-line planes

Eigenvalue De-embedding Method

Figure 1-3 Two-line Structure for Eigenvalue-based Method

Calculation of Insertion Loss

$$T_{L1} = T_A \times T_B \quad \text{(Eq. 2)}$$

$$T_{L2} = T_A \times T_{DUT} \times T_B \quad \text{(Eq. 3)}$$

$$T_{L2} \times T_{L1}^{-1} = T_A \times T_{DUT} \times T_B \times T_B^{-1} \times T_A^{-1} = T_A \times T_{DUT} \times T_A^{-1}$$
 (Eq. 4)

$$T_{DUT} = \begin{bmatrix} e^{\gamma (L2-L1)} & 0 \\ 0 & e^{-\gamma (L2-L1)} \end{bmatrix}$$
 (Eq.5)

 $T_{L2} \times T_{L1}^{-1}$ and T_{DUT} have the same eigenvalues.

Choose eigenvalue with absolute value <1 and real part is the attenuation.

Convert T-parameters to S-parameters:

$$S_{DUT} = \left[\frac{0}{e^{-\gamma L}} \frac{e^{-\gamma L}}{0} \right]$$
 (Eq.1)

$$\gamma$$
 = propagation constant = $\sqrt{(R + j\omega L)(G + j\omega C)}$ = $\alpha + j\beta$

$$\alpha \Rightarrow$$
 attenuation $20\log_{10}(\alpha) \times length = IL$

Case 4 – Delta-L Outcome

Delta-L+ (2L)

Input: 50_01&02-5INSL-DE09BD1.s4p

Trace 1

- IL from eigenvalue de-embedding
- Fitted IL curve according to $lL_{dB}(f) = a(f f_0)^b + c(f f_0)^2 + d(f f_0) + lL_0$

Port order:	1→2,, 2	2N-1→2	2N		~			
Trace length:	5.00		•	in	~			
Trace 2								
Input: 50_01&02-2INSL-DE09BD1.s4p								
Port order:	1→2,, 2	2N-1→2	2N		~			
Trace length:	2.00			•	in			
Options								
Enable cut-	off freq.:	50		GHz	~			
Resonance / artifact removal								
Fitting weight order: 0								
ricting weight	oracii	•						
Tituing weight	orderi			C-1	1-1-			
		J	•	Calcu	ılate			
Components				Calcu	ulate			
				Calcu	ulate			
Components Magnitude	to Plot				ulate			
Components Magnitude SDD11	to Plot Phase	DC11	SDC1	2	ulate			
Components Magnitude SDD11 SDD21 SCD11	to Plot Phase SDD12 SI SDD22 SI SCD12 SC	DC11 DC21 CC11	SDC1 SDC2 SCC1	2 2 2	ulate			
Components Magnitude SDD11 SDD21 SCD11	to Plot Phase SDD12 SI SDD22 SI	DC11 DC21 CC11	SDC1 SDC2 SCC1	2 2 2	ulate &			
Components Magnitude SDD11 SDD21 SCD11	to Plot Phase SDD12 SI SDD22 SI SCD12 SC	DC11 DC21 CC11	SDC1 SDC2 SCC1	2 2 2	ulate 🗽			

Note that above 50 GHz the de-embedding (blue curve) is becoming sensitive

Delta-L 4.0 Curve-Fitting

$$IL_{dB}(f) = a(f - f_0)^b + c(f - f_0)^2 + d(f - f_0) + IL_0$$
Conductor loss,
including surface
roughness

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14

- f₀ and IL₀ are introduced as offsets to accommodate typical 10 MHz starting points for VNA measurements
- For a perfectly smooth conductor b=0.5

Weighting Factor for Curve-Fitting – IPC TM-650 2.5.5.14

$$W(f) = \left(1 - \left(\frac{f}{f_{max}}\right)\right)^3 \quad (Eq.9)$$

Figure 5-3 The Suggested Weight Function for Insertion Loss Curve Fitting

Figure 5-2 Least Squares Fit Based on (eq. 7) Applied to a Representative Insertion Loss Curve

Note 1. Red represents the fitted curve.

Case 4 – 2X Thru Meeting IEEE 370 STD to 40 GHz

- The IL (blue) and RL (red) for the 2X Thru 2 in. stripline cross at 40 GHz
- The 2X Thru does not meet the IEEE 370 STD above and expect the de-embedding in Delta-L to become sensitive above 40 GHz with possibly resulting artifacts in the Delta-L 4.0 fit

Table 4—Fixture electrical requirement summary for mixed-mode interconnects

Metric	Structure	Equation	Class A limit	Class B limit	Class C limit
Insertion loss (FER1)	2X-Thru	$20 \times \log_{10} \left S_{DD21} \right $	-10 dB	−15 dB	−15 dB
Return loss (FER2)	2X-Thru	$20 \times \log_{10} S_{DD11} $	-20 dB	-10 dB	-6 dB
Difference between insertion and return loss (FER3)	2X-Thru	$ \begin{array}{c c} 20 \times \log_{10} \left S_{DD21} \right \\ -20 \times \log_{10} \left S_{DD11} \right \end{array} $	5 dB	0 dB	0 dB

Case 4 – TDR

- The 2 in. and 10 in. traces are nearly identical in the transition and along the length. Will lead to better deembedding and Delta-4.0 outcome.
- The transition from 100Ω to 85Ω is well engineered, but the stripline impedance target of 85Ω was missed in manufacturing. If target were hit, Delta-L 4.0 outcome to 50 GHz would have been excellent.

De-Embedding is Sensitive when RL and IL of 2X Thru Cross

- 2X Thru is too long and IL is higher
- Transition from connector or probes not optimized resulting in higher RL at high frequencies.
- Missed line impedance of design in manufacturing

Outline

- The Intel Delta-L Methodology
 - Test methodology
 - Eigenvalue de-embedding
 - Curve-fitting insertion loss
 - Design and de-embedding essentials for achieving a high-quality outcome at high-frequencies
- Some essentials
 - Making accurate S-parameter measurements
 - Determining the reference plane for high-quality de-embedding
 - causality/passivity
- Mitigating design and layout artifacts in the curve-fitting for IL
- 67 GHz Delta-L

Making Accurate S-parameter Measurements

- Suitable high-frequency cables with precision connectors and precision adapters that are clean, maintained and not worn
- Have a mechanically stable measurement setup and avoid movement of cables and the DUT plan the layout (make good use of "painter's tape to secure cables and test fixtures)
- Proper calibration coefficients for the cal kit
- Only the connector nut should be moving when mating a connector pair.
- Use proper torque wrenches
- Warm up the VNA per manufacturer's specs before calibrating and measuring
- Calibrate the VNA immediately prior to measurements
- Use cal kits with care they are relatively fragile, and regularly have them re-characterized per specs

Sanity Checks for Calibration

• Put the calibration standards back on and view on the Smith Chart to ensure that short, open, and load calibrations are "true"

Comparison of Two Different Vendor VNAs

Rohde & Schwarz ZNB 40 (100KHz – 40GHz)

Two adaptors are used, a 2.4 M to 3.5 F, and a 3.5M to 3.5 M.

TEM – Transverse Electromagnetic Propagation

- Transverse Electromagnetic (TEM) waves have the electric- and magnetic-field lines perpendicular, and E x H is in the direction of propagation.
- The geometry for a TEM transmission-line is translationally invariant, i.e., at every point along the length of the propagation, the cross-section geometry is the same
- TEM waves have the property that the wave speed is the same for all frequencies (no dispersion for the ideal lossless case R = G = 0).
- Stripline supports a <u>pure</u> TEM wave (though PCB stripline is technically not pure TEM, but quasi-TEM), but microstrip is <u>quasi-TEM</u>.

TEM Boundary for Probing

TDR for 2", 5", 10" for 85 Ω Differential Pair

S-Parameters—Causality and Passivity Check—IEEE 370 STD

<u>Causality</u> and <u>passivity</u> should always be checked for S-parameters. (functionality provided in AITT)

- Measured 1m SFP cable
- Maintain magnitude and enforce phase for causality, or <u>re-measure</u>

Outline

- The Intel Delta-L Methodology
 - Test methodology
 - Eigenvalue de-embedding
 - Curve-fitting insertion loss
 - Design and de-embedding essentials for achieving a high-quality outcome at high-frequencies
- Some essentials
 - Making accurate S-parameter measurements
 - Determining the reference plane for high-quality de-embedding
 - causality/passivity
- Mitigating design and layout artifacts in the curve-fitting for IL
- Moving toward 67 GHz Delta-L

Layout and Artifacts

- Layout features can cause artifacts and resonances
 - Long serpentine traces leads to resonances
 - Insufficient ground vias at signal layer transitions can lead to a parallel-plate resonance that couples to the stripline being measured

Best practices

- Straight traces (at 67 GHz shorter traces will be necessary anyway and save space)
- Universal footprint that ensures good signal return (GND) at the via transition –
 development underway at Intel/PacketMicro/Clear Signal Solutions
- Adequate ground stitching at via transition (this is part of the universal probe launch)
- No via stubs
- Via stitching that is randomized around a nominal spacing

Case 1 – Resonances Due to Serpentining: S-Parameters

- S-parameter data shows that design of transition to PCB from an SMA is fairly good
- S-parameter data meets IEEE 370 STD for de-embedding
- Resonances in data will be reflected in de-embedding and must be dealt with in loss fitting

Case 1 – Differential TDR

Case 1 – Delta-L 4.0 with & w/o Resonance/Artifact Removal

Have developed in AITT a curve-fitting routine that eliminates resonance and artifact skewing in the curve fitting

Case 2 – Coupling to Planes from Via Transition at Feed: S-Parameters

Resonance due to via transition at feed coupling to parallel-plate modes

- Resonance due to via transition coupling to parallel plate modes will result in de-embedding sensitivity
- Crossing of IL and RL in the shorter 2X Thru (brown, red curves) will result in de-embedding sensitivity
- EM simulation can be used here to identify this resonance, its cause, and solution

Case 2 - TDR

Parallel plate mode coupling to the signal trace is not readily apparent in the TDR

Case 2 - Delta-L 4.0 with & w/o Resonance/Artifact Removal

Uncertainty Report (L1-L2)

Insertion Loss

Fitted Insertion Loss

Modifying the Curve-Fitting Algorithm

$$W(f) = \left(1 - \left(\frac{f}{f_{max}}\right)\right)^3 \quad (Eq.9)$$

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14

$$W(f) = \left(1 - \left(\frac{f}{f_{max}}\right)\right)^n$$

Allow n = 0, 1, 2, or 3

Outline

- The Intel Delta-L Methodology
 - Test methodology
 - Eigenvalue de-embedding
 - Curve-fitting insertion loss
 - Design and de-embedding essentials for achieving a high-quality outcome at high-frequencies
- Some essentials
 - Making accurate S-parameter measurements
 - Determining the reference plane for high-quality de-embedding
 - causality/passivity
- Mitigating design and layout artifacts in the curve-fitting for IL
- 67 GHz Delta-L

Summary for Achieving Delta-L to 67 GHz

- 0.5 mm probe pitch, hand-held probes with bases for use in large-volume measurements and in fabrication environment
- Optimized universal footprint to accommodate handheld probes and rapid alignment/placement
- Stripline lengths meet IEEE 370 STD for de-embedding accuracy, e.g., 2" & 5"

PacketMicro 0.5 mm GSSG probes

With bases for handheld placement with alignment holes

Establishing Best Practices

- Straight traces (at 67 GHz shorter traces will be necessary anyway and save space) to avoid resonances from serpentine layout
- Universal footprint that ensures good signal return (GND) at the via transition, i.e., well-designed ground return via pattern to avoid coupling to parallel-plate modes
- No via stubs
- Via stitching that is randomized around a nominal spacing
- Careful design with full-wave EM simulation to ensure all of the above

Intel Delta-L 4.0 (0.5 mm pitch)

67 GHz PacketMicro GSSG Probe

Probe properties:

- 0.5 mm pitch
- GSSG configuration
- 3-mil robust probe tip
- 47-mi Coaxial cable
- 1.85 mm Samtec connector
- Stainless bases

67 GHz Delta-L TV-1

6-layer, Megtron 6, 2", 4", 5" ustrip and stripline

	Layer No	LAYER DESCRIPTION	Segment	Cu WT(OZ PER SQ FT)	EST THK (MILS)	Differential (85 Ohms+/-10%)		Dk	Df
						LW/LS (MILS)	Calculated Zdiff	@1GHz	@1GHz
		SOLDERMASK							
	1	TRACE	Cu	0.5 + Plating	1.6	12/5.75	83.45		
			Prepreg	R-5670G (1078x2)	6.68			3.15	0.002
	2	GND	Cu	1	1.35	REF	REF		
			Core	R-5775G	11.81			3.45	0.002
	3	GND	Cu	1	1.35	REF	REF		
			Prepreg	R-5670G (1080+2116x3)	17.11			3.58	0.002
	4	GND	Cu	1	1.35	REF	REF		
			Core	R-5775G	11.81			3.45	0.002
	5	TRACE	Cu	1	1.35	10/10	85.69		İ
			Prepreg	R-5670G (1078x2)	6.43			3.15	0.002
	6	GND	Cu	0.5 + Plating	1.6	REF	REF		
		SOLDERMASK							
		Est Board thickness over conductors (mils)			<u>62.44</u>				
		Meg6			mils				

μstrip Layer 1

Stripline Layer 5

67 GHz Delta-L TV-2 Design & EM Modeling

67 GHz Delta-L TV-2 – Measured TDR, RL, IL

The IL and RL cross at approximately 52 GHz.

A 2" length for 2X Thru is not necessary, and a shorter length would better satisfy IEEE 370.

67 GHz Delta-L TV-2 – Delta-L Results

Uncertainty Report (L1-L2)

Delta-L+ (2L) ₽									
Trace 1									
Input: _19&20-05INSL-DL01BD01.s4p									
Port order: 1→2,, 2N-1→2N									
Trace length: 5.00 in									
Trace 2									
Input: _19&20-02INSL-DL01BD01.s4p									
Port order: 1→2,, 2N-1→2N ×									
Trace length: 3.00 • in									
Options									
☐ Enable cut-off freq.: 50 GHz ∨									
Resonance / artifact removal									
Fitting weight order: 0									
▶ Calculate									
Components to Plot									
Magnitude Phase									
SDD11 SDD12 SDC11 SDC12 SDD21 SDD22 SDC21 SDC22 SCD11 SCD12 SCC11 SCC12 SCD21 SCC22 SCC22 SCC22									

Conclusion

Achieving a good outcome for Delta-L to 67 GHz will necessitate:

- Robust handheld probe achieved with PacketMicro GSSG
- Excellent design using EM simulation to develop the design
 - Probe and footprint optimization work from Delta-L 4.0 Universal Footprint
 - Via transition design
 - Backdrilling (possibly with air fill, i.e., no plug in the backdrill)
 - Per layer optimization
 - Material/Dk dependent
 - Fabrication/capability dependent
 - Fabrication technology HDI (Type 4) vs. PTH (Type 3)
- High-quality S-parameter measurements

Next Steps

- Clear Signal Solutions/PacketMicro 6-layer, Megtron 6 TV(s)
 - Any update to Delta-L 4.0 Universal Footprint
 - Via transition optimization for PTH
- Intel higher layer count TV(s)

Some EM Simulation Tools (incomplete)

- EMCoS Studio (MoM)
- Cadence Clarity (TD-FDTD, FD-FEM)
- CST Studio Suite Dassault Systems (TD-FIT, FD-FEM)
- HFSS Ansys (FD-FEM)
- EMA3D (TD-FDTD)

Thank you!

Questions?

(May also send Jim Drewniak questions or request for slides <u>james.drewniak@clearsig.com</u>, put "DesignCon Delta-L slides" in header)

