PCB Probing for Signal-Integrity Measurements

Richard Zai, PacketMicro
PCB Probing for Signal-Integrity Measurements

Richard Zai, PacketMicro
Dr. Richard Zai is PacketMicro CTO and has more than 25 years of experience in architecting and delivering technology solutions in the areas of RF and signal integrity probing, wireless sensor networks, and radio frequency identification (RFID). In 1987, he joined IBM Watson Research Center as a research staff member and manager, where he pioneered in the development of RFID and high-speed robotic technologies. After leaving IBM in 1997, Richard co-founded start-up companies in Silicon Valley. Most recently, he has been leading the development of rugged 20-GHz test probes and patented probe stations that have been used by many Fortune 100 companies. Richard receives his Ph.D. degree from the University of Wisconsin-Madison and holds 15 US patents.
PCB PROBING FOR SIGNAL INTEGRITY MEASUREMENTS
CHALLENGES IN HIGH SPEED PCB DESIGN

What were the HSD Challenges on Your Last Design?

- Inherent jitter/noise of test equipment meant wasted design margins
- Difficulty w/ compliance
- Couldn’t correlate models/simulations to HW
- Power Integrity (eg. Rail bounce, ground plane instability)
- EMI / EMC
- Missing skills / "know-how" on HSD design
- Lack of simulation models and/or accuracy
- SI issues or lack of margin visibility (eg. Jitter, collapsed "eyes")
- Problems probing signals

Source 2013 EMEA HSD seminars.
Data size: 411 respondents

2/3rds of last designs required 1 or more respins due to SI issues
CHALLENGES IN PCB PROBING

- **Diverse Form Factors:**
 - PCBs, unlike silicon wafers, have many different sizes and shapes.

- **Various Test Configurations:**
 - Single-sided, double-sided, daughter boards on motherboard, boards on a backplane, etc.

- **Different Test Pad Orientations:**
 - Ground pads are sometimes not in the convenient locations.

- **Robustness of Test Probes:**
 - Microprobes are good for probing wafers but too fragile for probing PCBs.
VARIous test configurations

Mother/Daughter Board Probing

Large PCB Probing

Vertical Probing
Not all the differential signal pads have adjacent GND pads.
Some differential signals cannot be probed.
GSSG microprobe is easier to use but still cannot probe 2 signal pairs.
Only 1 out of 5 differential pairs can be probed with GS & SG microprobes.
DIFFERENTIAL SIGNAL-SIGNAL PROBE

- Robust:
 - Signal-Signal only D-Probe and de-embedding tool offer an easy, robust solution for PCB characterization.

- Accurate:
 - 18-GHz D-Probe and 40-GHz differential GGB40A microprobe provide comparable measurement accuracy up to 18 GHz.

- Versatile:
 - D-Probe with 2 signal-signal tips can probe differential pads without neighboring GND pads as required by microprobes with 4 GSSG tips.
5 out of 5 differential pairs can be probed with signal-signal D-Probe.
D-PROBE SDD21 & SDD11

D-Probe S4P extracted from probe-thru-probe by SFD de-embedding tool.
Quick and easy probe planarization procedure.
PCB CHARACTERIZATION

- **2X-Thru De-embedding Method:**
 - Accurate: comparable accuracy to traditional TRL technique
 - Simple: only one 2x thru fixture is needed

- **De-embedding Tools:**
 - EMStar Smart Fixture De-embedding (SFD) Tool
 - AtaiTec In-Situ De-embedding (ISD) Tool
 - Keysight Automatic Fixture Removal (AFR) Tool
R&S ZNB20 VNA is ideal for S-parameter and TDR measurements.
Probe launch allows D-Probes and microprobes to measure the same trace.
TEST BOARD STACKUP

Layer 3: Single-ended striplines,
Layer 4: Differential striplines

<table>
<thead>
<tr>
<th></th>
<th>Top Probing</th>
<th>Bottom Probing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE Striplines</td>
<td>39.97-mil Stub</td>
<td>16.54-mil stub</td>
</tr>
<tr>
<td>DIFF Striplines</td>
<td>16.54-mil stub</td>
<td>39.97-mil Stub</td>
</tr>
</tbody>
</table>
D-Probe measurement of a 6” differential stripline trace with a 40-mil stub
SDD & TDD (3” STRIPLINE)

D-Probe measurement of a 3” differential stripline trace with a 40-mil stub
D-Probe and microprobe provide comparable TDR accuracy.

* 40 GHz GGB dual microwave probe (Model 40 A) is used in the comparison.
SDD21, D-PROBE vs. MICROPROBE (6” TRACE)

D-Probe shows low insertion loss with a simple ECal.

* SMA with 16-mil via stub is used for the comparison.
SDD21: D-PROBE vs. MICROPROBE (3” TRACE)

D-Probe shows low insertion loss with a simple ECal.

* SMA with 16-mil via stub is used for the comparison.
EMSTAR SFD TOOL

- **Versatile:**
 - Multiport fixture de-embedding for single-ended and differential devices with support of asymmetrical fixture configuration
 - S-parameters and T-parameters conversion
 - Mode transformation
 - Powerful plotting tool

- **Accurate:**
 - Comparable to Keysight ADS accuracy

- **Easy-to-use:**
 - User-friendly interface

- **Fast:**
 - Fast runtime with simple installation
SDD21, D-PROBE vs. MICROPROBE (SFD)

SDD21 (3” DUT)

- Probes and SMA have comparable de-embedded results
- D-Probe and GGB probes have similar accuracy up to 18 GHz
EMStar SFD and Keysight ADS have comparable accuracy.

* Comparison was performed by Jthink Technology
ATAITEC ISD TOOL

- **Versatile:**
 - Multiport fixture de-embedding for single-ended and differential devices with support of asymmetrical fixture configuration
 - S-parameters and T-parameters conversion
 - Mode transformation
- **Simple user interface:**
 - Data entry on one page
• Probes and SMA have comparable de-embedded results
• D-Probe and GGB probes have similar accuracy up to 18 GHz
RUGGED SINGLE-ENDED PROBE

- **Robust:**
 - Strong Beryllium Copper (BeCu) probe tip allows direct probing on uneven surfaces, such as solder balls.

- **Accurate:**
 - S-Probe and microprobe provide comparable measurement accuracy up to 20 GHz.

- **Easy-to-use:**
 - Mylar tape approach makes probe planarization quick and easy.

S-Probe

TCS60 Cal Substrate
S-PROBE S21 & S11

Rugged probe with 20 GHz performance
PROBE-TIP CALIBRATION OF S-PROBE

Two probe measurement of TCS60 thru.

Direct Probing on Solder Bumps!
S-PROBE vs. MICROPROBE

Transmission Line

* 40 GHz Cascade ACP-40 GS/SG 550um microprobes were used for comparison

Low-pass Filter

* Comparison was performed by Jthink Technology

S-Probe and microprobe have comparable accuracy up to 20 GHz.
SUMMARY

PCB Probing for Signal Integrity Measurements

- Use 2x thru method:
 - Simple: one 2x thru fixture
 - Accurate: comparable to TRL accuracy

- Choose the right probes:
 - Rugged probes ≤ 20 GHz
 - Microprobes ≥ 20 GHz

- Select the good de-embedding tool

- Find the probe station meeting your current and future needs
MORE INFORMATION

- www.packetmicro.com
- rzai@packetmicro.com
Thank you!

QUESTIONS?