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Delta-L 4.0 Methodology — to 40 GHz

27,57, 10” trace lengths used for IL extraction
Test Vehicle with PacketMicro Probes and Bases
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Workflow Implemented in Commercial Toolsets

R&S®ZNB40 setup with Delta-L 4.0 probes

emameemnes ADVA@Nced Interconnect Test Tool (AITT) — DLP (Clear Signal Solutions)
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Next Step — Delta-L to 67 GHz

e Want to achieve 56 GHz over 1 lane for 224 Universal Probe Launch with
Gbps data rate/PAM4

e Need to achieve 67 GHz for Delta-L method

— using hand-held probes for use in large-volume
measurements and in fabrication environment

— Must have a universal footprint to
accommodate handheld probes and rapid
alignment/placement

— 0.4 mm most likely a minimum probe pitch for

rapid alignment due to manufacturing tolerance
in PCB fab

e Must consider deviating from the legacy 27,
5”7, 10 patterns for Delta-L, e.g., 17, 6” to
meet IEEE 370 STD for de-embedding | 20
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Probing Solution to 67 GHz C

* Optimize probe and via transition simultaneously to achieve a RL>6dB at 67 GHZ
* Achieve an IL <6 dB at 67 GHz by using shorter 2X Thru
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Status — PCB and TDR CSS

6-layer, Megtron 6, PCB, no via stubs, unknown foil, but very rough
from cross-section analysis
TDR Impedance (Differential Mode)

- Z /Dprobes

110 —

e (0]

Impedan

2.4 mm connectors

80 —

T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
2 25 3 3.E 4 4.5

Time (ns)

—— CONx2-2IN_TRS-GT2-BD1 s COMxZ-SIN_TRE-GTO2-BD1 DPS00S_C001_C002-2IN_TRL-GTOREDL = DP3005_C001_C002-5IN_TR2-GTO2EDL

Will revisit getting this to 67 GHz later in presentation
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Status — 50 GHz 2.4 mm Connectors
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line

T'he Intel Delta-L Methodology

Test methodology

Eigenvalue de-embedding

Curve-fitting insertion loss

Design and de-embedding essentials for achieving a high-
quality outcome at high-frequencies
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Delta-L. References Planes

Ref plane A

Ref plane A

Ref plane B Ref plane B’

Figure 1-1 Reference Planes in Printed Board Insertion
Loss Characterization

Ref plane B Ref plane B’

Figure 1-2 Reference Planes in Printed Board Insertion
Loss Characterization with Microwave Probe

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14

CSS

Reference planes in
all cases are TEM
because they are at
transmission-line
planes
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Eigenvalue De-embedding Method CSS

Ref Plane Ref Plane ‘

2X Thru

T,,=T.xTs (Eq.2)

TA s To=Tax Tpurx T (EQ.3)

L1 To XT A =TaXTour XTg X Tg X T3 =Ty x Ty X T, (EQ. 4)
Ref Plane Ref Plane T et 2D 0
s : DUT=| ¢ PYE) (Eq.5)
T
Ta Tour 5 Total structure
2 \
Figure 1-3 Two-line Structure for Eigenvalue-based

Method

12
IPC-TM-650TEST METHODS MANUAL, 2.5.5.14



Calculation of Insertion Loss
Iy=TaxTg (EQ. 2)
lio=TaXxTpurXxTg (EQ.3)
ToXT =T x T XTex Tg XT3 =T, x Tpr x T (Eq. 4)

gv(L2-L1) 0
T —
DUT =

0 —y (L2-L1)

] (EQ.5)
e

T,o xT,} and Tpur have the same eigenvalues.

Choose eigenvalue with absolute value <1 and real part is the attenuation.

Convert T-parameters to S-parameters:

0 et
SDUT:[F 0

(Eq.1)

o = attenuation

y = propagation constant = \/(R+ joL)(G+joC) = a+jp 20log, (&) xlength=1L

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14
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Case 4 — Delta-L 4.0 Outcome

Uncertainty Report (L1-L2)

5 — Delta-L+ (2L) &
] Trace 1

4 —
= ] Input: G170D-04-SMA-10INCH-L10.s4p ;
=
£ 3 2 Unicertainty Port order: 1—2, ..., 2N-1-2N v
W 826.56GHz —_
g ] 1.108% Trace length: 10.00 - in v
_cl - Uncertainty
£ LneEB16.00Gk: Trace 2
n L2 0464%
a B Uncert: 0 BB ™
£ ]| uncerB800GRE 1 : PG170D-04-SMA-2INCH-L10.s4p kel
=1 | eaqudan Input: 04 SMA-ZINCH-L10s%p s

E 0503 Port order: 152, ..., 2N-152N v
o - Trace length: 2.00 1 in
I T T T T I T T T T | T T T T I T T T T | T T T T |
0 10 <0 =0 40 =0 () Resonance / Artifact Removal
Frequency (GHz)
Cut-off frequency: 30 GHz
Fitted Inzertion Loss
P calculate

— IL from eigenvalue de-embedding

— Fitted IL curve according to IL_s(f) =a(f — fo)° + c(f — fo)? + d(f — fo) + ILg

Note that above 40 GHz the de-embedding (blue curve) is becoming sensitive



Delta-L 4.0 Curve-Fitting

IL45(5) =3(Jc_fo)b +C(JC_ﬁ::)E +d(f — fo) + I
\ ; \ ;

| |
Conductor loss,

including surface
roughness

Dielectric loss

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14

* f,and IL, are introduced as offsets to accommodate typical 10 MHz starting
points for VNA measurements

* For a perfectly smooth conductor b=0.5
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Weighting Factor for Curve-Fitting

W) = (1- (i))a (Eq.9)
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Figure 5-3 The Suggested Weight Function for Insertion

Loss Curve Fitting

IPC-TM-650TEST METHODS MANUAL, 2.5.5.14
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Figure 5-2 Least Squares Fit Based on (eq. 7) Applied to
a Representative Insertion Loss Curve
Note 1. Red represents the fitted curve.
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e The IL (blue) and RL (red) for the 2X Thru 2 in. stripline cross at 40 GHz
e The 2X Thru does not meet the IEEE 370 STD above and expect the de-embedding in
Delta-L to become sensitive above 40 GHz with possibly resulting artifacts in the Delta-

L 4.0 fit

Table 4—Fixture electrical requirement summary for mixed-mode interconnects

Metric Structure Equation Class A limit Class B limit Class C limit
Insertion loss 2X-Thru 20 log ‘S | -10dB -15dB —-15dB
(FERI) 10 DD21
Return 1 2X-Thru -20 dB -10dB -6 dB
Difference 2X-Thru 20xlog |S ‘ 5dB 0dB 0dB
between insertion 1017 bD21
and return loss —ZOxlogm‘SDD“|
(FER3)




Case 4 — TDR

TDR Impedance (Differential Mode)
s * The 2 in. and 10 1n. traces are
: [T nearly identical in the
o ] | /| transition and along the
| o~ length. Will lead to better de-
] AN embedding and Delta-4.0
e | outcome.
Hj " * The transition from 100 Q to
85 Q) is well engineered, but
the stripline impedance target
of 85 €2 was missed in
manufacturing. If target were

Impedance (Q)

90 —

ES —

T 'T (')' 1 T hit, Delta-L 4.0 outcome to
NPGL700-04-SMA-2INCH-L10 NPG170D-04-5MA-10INCH-L10 50 GHZ Would have been

excellent.



De-Embedding 1s Sensitive when RL and IL of 2X Thru Cross

A 4

S-Parameter Plot N o,
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-0 4

Frequency (GHz)

04-SMA-2INCH-L10.s4p_Magn(SDD21)

ICHL10 == NPG1T(

Crossing IL and RL of 2X Thru: You shall notcross!
e 2X Thru is too long and IL is higher
* Transition from connector or probes

not optimized resulting in higher RL

at high frequencies.
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Outline

¢ Some essentials

Making accurate S-parameter measurements
Determining the reference plane for high-quality de-
embedding

causality/passivity

20



Making Accurate S-parameter Measurements

Suitable high-frequency cables with precision connectors and precision
adapters that are clean, maintained and not worn

Have a mechanically stable measurement setup and avoid movement of
cables and the DUT - plan the layout

Proper calibration coefficients for the cal kit
Only the connector nut should be moving when mating a connector pair.
Use proper torque wrenches

Warm up the VNA per manufacturer’s specs before calibrating and
measuring

Calibrate the VNA immediately prior to measurements

Use cal kits with care — they are relatively fragile, and regularly have them re-
characterized per specs

21



Sanity Checks for Calibration

e Put the calibration standards back on and view on the Smith
Chart to ensure that short, open, and load calibrations are “true””

Low frequency or narrowband

short open 50 Q)

High ffequency

short open / 50 Q)

*Gree Vaueht: Rohde & Schwarz



Comparison of Two Different Vendor VNASs

Connectc
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TEM — Transverse Electromagnetic Propagation

&o ref | p ]
/l \ ~ / \\ N <\/\ /:‘ [
S &
fgr \ / V¥ \
ref 2
Microstrip  EField Stripline
— H-Field

Transverse Electromagnetic (TEM) waves have the electric- and magnetic-field
lines perpendicular, and E x H is in the direction of propagation.

The geometry for a TEM transmission-line is translationally invariant, i.e., at every
point along the length of the propagation, the cross-section geometry is the same

TEM waves have the property that the wave speed is the same for all frequencies (no
dispersion for the ideal lossless case R = G = 0).

Stripline supports a pure TEM wave (though PCB stripline is technically not pure TEM,
but quasi-TEM), but microstrip is quasi-TEM.



TEM Boundary for Probing CSS

not TEM (higher-order (Transmission-line
EM fields) TEM {

behavior)

o é) L&

C;’mbing Padso

||

@ (@

Differential Trace

Desired reference
plane

>
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TDR for 2, 57, 10” for 85 Q3 Differential Pair

Impedance (5)

TDR function on ZNA/ZNB important for verifying
physics and quality of fixturing —

120 —

| Probe tips

Ref plane/Port location for 2 in. 2X Thru

Desired reference plane

100 —

80 —

&0 —

\

A

Note transmission-line behavior
where Ref plane/port used for
de-embedding is located

Ref plane/Port location for 5 in. 2X Thru

T T T T T T T T T T T
3 4
Time (ns)

intel_npg170d_1_probe_10inch H

intel_npg170d_1_probe_Zinch intel_npg170d_1_probe_Sinch
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S-Parameters— Causality and Passivity Check

Causality and passivity should always be checked for S-parameters.
(functionality provided in AITT)
* Measured Im SFP cable ] SDD21 of 1m SEP Cable

* Maintain magnitude and enforce
phase for causality, or re-measure

Original and Enforced Phases

Magnitude (dB)
s & kb
|

1 . .
0 , ) 60 3
o!Non-linear phase N
w100+ 1 ]
= -80 -
== e e~ e S - I T B L E L L I L R
= 200 -2 0 5 10 15 20 5 30
< " [Total Phas¢ ; Frequency (GHz)
2 300 L= T Dﬁglﬂﬂl 4 Dﬁglﬂﬂl Original and Enforced Impulse Responses
= —— Enforced —— Enforced 0 ‘ : : ‘ : :
= . : . .
R 400 5 10 15 1 20 0.3 E
= N 08 < inal
o -328 . — — Origina
o 5001 "»,“h . 07 —— Enforced
E "\.\ 061
2 gl 329 . | ol
~ N 04l
330 o
'?UU r '\.\' - 03k
02F
87 872 874 876 878
800 I I I | L 1 1 1 1 01k
0 2 4 6 8 10 12 14 16 18 20 .
Frequency (GHz)

1 1 1
6.5 7 7.5 8 8.5
Time (ns)




Outline @

e The Intel Delta-L Methodology

— Test methodology

- Eigenvalue de-embedding

—  Curve-fitting insertion loss

— Design and de-embedding essentials for achieving a high-
quality outcome at high-frequencies

e Some essentials
— Making accurate S-parameter measurements
— Determining the reference plane for high-quality de-
embedding
— causality/passivity
e Mitigating design and layout artifacts in the curve-
fitting for IL

e Moving toward 67 GHz Delta-L
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Layout and Artifacts

e Layout features can cause artifacts and resonances

— Serpentining long traces leads to resonances

— Insufficient ground vias at signal layer transitions can lead to
a parallel-plate resonance that couples to the stripline being

measured

e Best practices

— Straight traces (at 67 GHz shorter traces will be necessary
anyway and save space)

— Universal footprint that ensures good signal return (GND) at
the via transition — development underway with Intel

— Via stitching that 1s randomized around a nominal spacing
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Magnitude (dB)

Case 1 — Resonances Due to Serpentining: S-Parameters

S-Parameter Plot

| ESSE
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* S-parameter data shows that design of transition to PCB from an
SMA is fairly good

* S-parameter data meets IEEE 370 STD for de-embedding

* Resonances 1n data will be reflected in de-embedding and must be
dealt with 1n loss fitting



Case

1 — Difterential TDR

TDR Impedance (Differential Mode)

110 —

100 —

0 —

Impedance ()

B0 —

110 1n and 5 in not “identical” due
| to difference in serpentining
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A 9
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[ “~_ Transition from SMA to 90 2
PCB trace can be designed

smoother with good EM
simulation
[ T T T T [ T T T T [ [
Time (ns)

Cas= 1_{SMA)_L7-05 Cas= 1_{SMA)_L7-10



Case 1 — Delta-L 4.0 with & w/o0 Resonance/Artifact Removal

Insertion Loss | in (dB)

Have developed in AITT a curve-fitting routine that eliminates
resonance and artifact skewing in the curve fitting
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Case 2 — Coupling to Planes from Via Transition at Feed: S-Parameters

Resonance due to via transition at
feed coupling to parallel-plate modes
S-Parameter Plot

=
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Frequency [(GHz)
Casz 2_5_ZLsdp Magn(SDD11) = Case 2_10_1Lsd4p Magn(SDD11) Case 2_10_1Ls4p_Magn(SDD21) = Cas= 2_5_2L.s4p_Magn(SDD21)

Resonance due to via transition coupling to parallel plate modes will result in
de-embedding sensitivity

Crossing of IL and RL 1in the shorter 2X Thru (brown, red curves) will result in
de-embedding sensitivity

EM simulation can be used here to identify this resonance, its cause, and
solution



Case 2 - TDR

TDR Impedance (Differential Mode)

F ./.p" o,
110 — - /
L

100 — . TN ///

Impedance (2)
{.,
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T

a0 —

| EM simulation can be used to
_ significantly improve this
o design and transition

I T T T T I T T T T | T T T T I T T T T I
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Case 2_5_ 2L Case 2_10_1L

Parallel plate mode coupling to the signal trace 1s not readily
apparent in the TDR



Case 2 - Delta-L 4.0 with & w/o0 Resonance/Artifact Removal
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Outline @

e The Intel Delta-L Methodology

— Test methodology

- Eigenvalue de-embedding

—  Curve-fitting insertion loss

— Design and de-embedding essentials for achieving a high-
quality outcome at high-frequencies

e Some essentials
— Making accurate S-parameter measurements
— Determining the reference plane for high-quality de-
embedding
— causality/passivity
e Mitigating design and layout artifacts in the curve-
fitting for IL

e Moving toward 67 GHz Delta-L
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M agnitude (dB)

67 GHz Test Vehicle with Connectors
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e 2X Thru does not meet IEEE 370 STD — RL and IL cross at 44 GHz
* 5”too long for 2X Thru

* RL looks to be adequate to 67 GHz, and 1 for 2X Thru would be better
* De-embedding sensitive where IL and RL of 2X Thru cross as seen in Delta-L



Impedance {Q)

67 GHz Test Vehicle TDR

115 —_
110 —:
105 —:
100 —:
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TDR Impedance (Differential Mode)

T T T T T T
2 3

Dedtal,_TSU_MEGB{N)_HWLPI_Glicep_10inch_L1 LO3_2210140633-2_221206_SMA Prabe

T T T T T T T T T T T
4 5 &

Time {ns)

Diedtal,_TSU_MEGB{N)_HWLPI_Glicep_Sandh_L1 LO3_2210140BE3-2_221206_SMA Probe

Design of connector
transition good

Periodicity in both 5” and 10”
lines unknown (have only
data from customer).
Periodic in time indicates a
discrete resonance frequency,
may be due to periodic via
stitching. Via-stitching
should be randomized about
an average value.

Could be fiber-weave.
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Summary for Achieving Delta-L to 67 GHz

Use hand-held probes for use in
large-volume measurements and 1n
fabrication environment

Must have optimized universal
footprint to accommodate handheld
probes and rapid
alignment/placement

0.4 mm most likely a minimum
probe pitch for rapid alignment due
to manufacturing tolerance in PCB

fab

Must consider deviating from the
legacy 27, 5, 10” patterns for Delta-

L,e.g.,1”,6” to meet IEEE 370
STD for de-embedding accuracy

Universal Probe Launch with
PacketMicro Probes
& IV § I A




Establishing Best Practices

e Straight traces (at 67 GHz shorter traces will be

necessary anyway and save space) to avoid resonances
from serpentinig

e Universal footprint that ensures good signal return
(GND) at the via transition, 1.e., well-designed ground
return via pattern to avoid coupling to parallel-plate
modes

e Via stitching that 1s randomized around a nominal
spacing

e Careful design with full-wave EM simulation to ensure
all of the above
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Probing Solution to 67 GHz CS

* Optimize probe and via transition simultaneously with EM simulation to achieve a
RL>6dB at 67 GHZ
* Achieve an IL <6 dB at 67 GHz by using shorter 2X Thru

not TEM (higher- (Transmission-

. . - order EM fields) TE line behavior)

N {5 o -—-._________“‘ . 1 via pa
l:.:’]In::ﬂ:-il'lng", Pads@ .-
Desired

""" reference plane

¥l PacketMicro
/ D-probe

calibsation

/_Deembed to plane “’»% ‘ 41
TEM plane



Conclusion
Achieving a good outcome for Delta-L to 67 GHz will
necessitate:

e Excellent design using EM simulation to develop the
design

e High-quality S-parameter measurements
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Some EM Simulation Tools (incomplete)

EMCoS Studio (MoM)
Cadence Clarity (TD-FDTD, FD-FEM)

CST Studio Suite — Dassault Systems (TD-FIT, FD-
FEM)

HFSS — Ansys (FD-FEM)
EMA3D (TD-FDTD)
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Thank you!

Questions?

(May also send Jim Drewniak questions or request for slides

)


mailto:james.drewniak@clearsig.com
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