

Power Integrity Measurement With Omicron Lab Bode 100 VNA

Typical PDN Impedance Profile

- Impedance profile formed by the interaction of various PDN components
- Impedance peak at package/chip resonance
- Peak impedance dependent on package, PCB, and on-chip parameters
- Typical impedance in the range of tens of milliohms

2-Port VNA Measurements of Low Z_{DUT}

• 1st order Analysis

$$(Z_{DUT} << Z_{o})$$

$$Z_{DUT} = 25 \text{ S}_{21} \Omega$$

2nd order Analysis

$$Z_{DUT} = 25 \; \frac{S_{21}}{1 - S_{21}} \qquad \Omega$$

Low-Freq Errors Caused by Ground Loop

If the DUT's impedance is very small (ZDUT < tens of milliohms) Source current flows into source-to-receiver cable GND loop. Measurement errors occur at LF range (<20kHz)

Use Transformer to Break the Ground Loop

18 GHz R-Probe

R-Probe is ideal for probing a populated board with test points surrounded by components because of its 30-mil probe tips. Typical R-Probe applications are PDN and RF measurements.

TCS70 Calibration Substrate

Specifications:

Substrate: Polished alumina

Structure: Open, short, thru, 25 Ω , 50 Ω , 100 Ω

Contact Material: Gold

Accuracy: 25 Ω , 50 Ω < 0.5%, 100 Ω < 1%

Size: 17.3 x 9.4 x 0.6 mm (0.68 x 0.37 x 0.025 in)

R-Probe Part No.

- RP-GR-151502 18 GHz, 0.2 mm/ 8 mil pitch
- **RP-GR-151503** 18 GHz, 0.3 mm/ 8 mil pitch
- **RP-GR-151504** 15 GHz, 0.4 mm/16 mil pitch
- **RP-GR-151505** 15 GHz, 0.5 mm/20 mil pitch
- RP-GR-121508 12 GHz, 0.8 mm/32 mil pitch
- RP-GR-121510 12 GHz, 1.0 mm/40 mil pitch

Power Integrity Probing

 PI Probing amid surrounding components is challenging

Probe-Pitch Selection

R-Probe Part Number:

- RP-GR-181502 18 GHz, 0.2 mm/ 8 mil pitch
- RP-GR-181503 18 GHz, 0.3 mm/ 12 mil pitch
- RP-GR-151504 15 GHz, 0.4 mm/ 16 mil pitch
- RP-GR-151505 15 GHz, 0.5 mm/ 20 mil pitch
- RP-GR-121508 12 GHz, 0.8 mm/ 32 mil pitch
- RP-GR-121510 12 GHz, 1.0 mm/ 40 mil pitch

Recommendation: B + 0.2 mm < Probe Pitch < A - 0.2 mm

Size	Probe Pitch	Α	В	С	D	Component
						Size
01005	RP-GR-181503	0.48	0.12	0.18	0.20	0.4 x 0. 2
0201	RP-GR-151505	0.75	0.30	0.30	0.30	0.6 x 0.3
0402	0.7mm < Pitch <1.3mm	1.50	0.50	0.50	0.60	1.0 x 0.5
0603	0.8mm < Pitch <1.9mm	2.10	0.60	0.90	0.90	1.6 x 0.8
0805	1.2mm < Pitch < 2.8mm	3.0	1.0	1.0	1.25	2.0 x 1.25

Typical Reflow Soldering Footprint and Component Size in mm

Milliohm PDN Measurements

Probe Planarization Tips

- Good contact of both probe tips with the DUT is essential to accurate calibration and measurements.
- Mylar tape provides leveling guidance on flat, even surface (bare PCB).
- Color marker helps on uneven surface (solder bump).
- A good microscope is important. You might damage the probe if you cannot see its tips well.

TP250 Precision Positioner

- XYZ-axis travel: 16 mm with 500 μm/turn (50 TPI, 5μm resolution)
- **Height coarse adjustment**: 5 mm/step (14 steps)
- **O (Planarity) control**: $\pm 10^{\circ}$ with 2.5° /turn and 0.025° resolution
- **Dimension**: 9" L x 2.7" W x 4.3" H
- Weight: 2.86 lb./1.30 kg

Probe Planarization with TP250

Probe Planarization Video:

https://packetmicro.com/Videos/PacketMicro_Probe_Planarization.mp4

PDN Measurements with Bode 100

- Probe-tip calibration is recommended for making PDN measurements with Bode 100.
- Separate copper pad should be used for short calibration.
- Bode 100 shows comparable measurement accuracy with a standard VNA.

PDN Shunt-Thru Impedance Analysis

PDN Connector Calibration Setup

Set Configuration for Open/Load/Thru

Short/ Open/Load/Thru/ Calibration

Thru Calibration

Open Calibration

Load Calibration

Set Configuration for Short

Change Receiver 2 Attenuator to 0 dB for improved sensitivity!

Complete Short Calibration

Test Cases

Case 1: PDN Board

Component Description	QTY	Ref Des	Mfg P/N #
CAP CER 22UF 6.3V X5R 0805	4	C1,C2,C3,C4	C0805C226M9PACTU
CAP CER 1UF 6.3V X6S 0402	80	C5-C84	GRT155C80J105ME01D

Case 2: Copper 60x60x10 mils (1.5 x1.5 x0.1 mm

Test Setup

Case 1: Connector-end Calibration

Minimum impedance: 13 mΩ @ 254 kHz

Case 2: Connector-end Calibration

Minimum impedance: 1 m Ω below 3 kHz

Probe-tip Calibration with TCS70V2

Set Configuration for Open/Load/Thru

Open and Thru Calibration

 Use TCS70V2 substrate's Open pad to perform both OPEN and THRU calibrations

Note: Open and Thru Calibration

To ensure both the R-Probe tips are making good contact to the TCS70V2's Open substrate pad for OPEN and THRU calibration:

- 1. Disconnect the BNC cables from the Bode-100 and J2102B Injection transformer
- Measure the continuity between the left and right BNC cable center-to-center conductors
- Measure the continuity between the left and right BNC cable outer-shell to outer-shell
- 4. Reconnect the BNC cables back to the Bode-100 and injection transformer before continuing on to perform the Bode-100 Open and Thru calibrations

Load Calibration

Note: Load Calibration

To ensure both the R-Probe tips are making good contact to the TCS70V2's 50-Ohm substrate pad for LOAD calibration:

- 1. Disconnect the BNC cables from the Bode-100 and J2102B Injection Transform
- Measure the LOAD resistance (50-Ohms) between the BNC cable center to the outer shell on both BNC cable ends.
- 3. Reconnect the BNC cables back to the Bode-100 and Injection Transformer before continue on to perform the Bode-100 OPEN calibration

Set Configuration for Short Calibration

Change Receiver 2 Attenuator to 0 dB for improved sensitivity!

Short Calibration

Note: Short Calibration

To ensure both the R-Probe tips are making good contact to the square copper pad SHORT calibration:

- 1. Disconnect the BNC cables from the Bode-100 and J2102B Injection Transform
- Measure the continuity between the BNC cable center conductor to the BNC connector outer shell on both cable ends.
- 3. Reconnect the BNC cables back to the Bode-100 and Injection Transformer before continue on to perform the Bode-100 SHORT calibration

Case 1: Probe-tip Calibration

Case 2: Probe-tip Calibration

Probe-tip calibration is recommended for making PDN measurements with Bode 100!

Omicron Bode 100 vs. Rohde ZNB40

Measurements of two VNAs show comparable results for the overlapping frequency range between 100 kHz and 50 MHz.

https://packetmicro.com/documents/Power_Integrity_Probing_with_Rohde_VNA.pdf

References

- Istvan Novak, "Power Integrity: Advanced Design and Characterization"
 - (http://www.cei.se/media/48264/cei%20europe%20course%2056.pdf)
- Istvan Novak, "Measuring Milliohms and Pico Henrys in Power Distribution Networks"

(http://electrical-integrity.com/Paper_download_files/DC00_MeasuringMiliohms_slides.pdf)

 Istvan Novak, "PDN Measurements: Reducing Cable-Braid Loop Error"

(http://www.electrical-integrity.com/Quietpower_files/Quietpower-3.pdf)

PacketMicro Product Offering

PacketMicro offers one-stop shopping for your needs in PCB probing and SI analysis.

- Rugged 40/30 GHz probes
- DIY Probe Stations

CSS AITT Signal-Integrity Tool

Probe Positioners

- Junkosha phase-stable cables
 - Dino-Lite Microscopes

PacketMicro Customers (of 200+ in 30+ Countries)

41

Thank You

We help make your probing tasks easy!

- Benchtop DIY Probe Stations
- Rugged 40 GHz Differential Probes
- Rugged 30 GHz Single-ended Probes
- Engineering Services
- Signal Integrity Consulting

Contact:

support@packetmicro.com

Office: 408-675-3900

2312 Walsh Avenue, Suite A, Santa Clara, CA 95051, USA