

Power Integrity Measurement With Rohde & Schwarz VNA

PacketMicro, Inc., Santa Clara, California, USA www.packetmicro.com

Typical PDN Impedance Profile

- Impedance profile formed by the interaction of various PDN components
- Impedance peak at package/chip resonance
- Peak impedance dependent on package, PCB, and on-chip parameters
- Typical impedance in the range of tens of milliohms

2-Port VNA Measurements of Low Z_{DUT}

1st order Analysis
(Z_{DUT}<<Z_o)

$$Z_{DUT} = 25 \, \mathrm{S}_{21} \, \Omega$$

• 2nd order Analysis

$$Z_{DUT} = 25 \ \frac{S_{21}}{1 - S_{21}} \qquad \Omega$$

Low-Freq Errors Caused by Ground Loop

If the DUT's impedance is very small (ZDUT < tens of milliohms) Source current flows into source-to-receiver cable GND loop. Measurement errors occur at LF range (<20kHz)

Use Transformer to Break the Ground Loop

18 GHz R-Probe

R-Probe is ideal for probing a populated board with test points surrounded by components because of its 30-mil probe tips. Typical R-Probe applications are PDN and RF measurements.

TCS70 Calibration Substrate

Specifications:

Substrate: Polished alumina **Structure**: Open, short, thru, 25 Ω , 50 Ω , 100 Ω **Contact Material**: Gold **Accuracy**: 25 Ω , 50 Ω < 0.5%, 100 Ω < 1% **Size**: 17.3 x 9.4 x 0.6 mm (0.68 x 0.37 x 0.025 in)

R-Probe Part No.

- RP-GR-151502 18 GHz, 0.2 mm/ 8 mil pitch
- **RP-GR-151503** 18 GHz, 0.3 mm/ 8 mil pitch
- RP-GR-151504 15 GHz, 0.4 mm/16 mil pitch
- **RP-GR-151505** 15 GHz, 0.5 mm/20 mil pitch
- RP-GR-121508 12 GHz, 0.8 mm/32 mil pitch
- RP-GR-121510 12 GHz, 1.0 mm/40 mil pitch

Probe-Pitch Selection

R-Probe Part Number:

- RP-GR-181502 18 GHz, 0.2 mm/ 8 mil pitch
- RP-GR-181503 18 GHz, 0.3 mm/ 12 mil pitch
- RP-GR-151504 15 GHz, 0.4 mm/ 16 mil pitch
- RP-GR-151505 15 GHz, 0.5 mm/ 20 mil pitch
- RP-GR-121508 12 GHz, 0.8 mm/ 32 mil pitch
- **RP-GR-121510** 12 GHz, 1.0 mm/ 40 mil pitch

Recommendation: B + 0.2 mm < Probe Pitch < A – 0. 2mm

Size	Probe Pitch	Α	В	С	D	Component
						Size
01005	RP-GR-181503	0.48	0.12	0.18	0.20	0.4 x 0. 2
0201	RP-GR-151505	0.75	0.30	0.30	0.30	0.6 x 0.3
0402	0.7mm < Pitch <1.3mm	1.50	0.50	0.50	0.60	1.0 x 0.5
0603	0.8mm < Pitch <1.9mm	2.10	0.60	0.90	0.90	1.6 x 0.8
0805	1.2mm < Pitch <2.8mm	3.0	1.0	1.0	1.25	2.0 x 1.25

Typical Reflow Soldering Footprint and Component Size in mm

Power Integrity Probing

 PI Probing amid surrounding components is challenging

Milliohm PDN Measurements

Probe Planarization Tips

- Good contact of both probe tips with the DUT is essential to accurate calibration and measurements.
- Mylar tape provides leveling guidance on flat, even surface (bare PCB).
- Color marker helps on uneven surface (solder bump).
- A good microscope is important. You might damage the probe if you cannot see its tips well.

TP250 Precision Positioner

- **XYZ-axis travel**: 16 mm with 500 μm/turn (50 TPI, 5μm resolution)
- Height coarse adjustment: 5 mm/step (14 steps)
- **O** (**Planarity**) control: $\pm 10^{\circ}$ with 2.5° /turn and 0.025° resolution
- **Dimension**: 9" L x 2.7" W x 4.3" H
- Weight: 2.86 lb./1.30 kg

Probe Planarization with TP250

Probe Planarization Video:

https://packetmicro.com/Videos/PacketMicro_Probe_Planarization.mp4

Probe-tip SOLT Cal

🛞 Calibration Presetting	-		* = =			
Ports and Type	New New	ar h				Cal
Select the ports to be ca	librated and the ty	pe of the ca	libration.		2	Calibration
Ports P1 ()	P3 🕡) - P2		P4 💿 📕	j7.001 kΩ 0.011142 H	Start (Cal Unit)
	×			×	An a	Start (Manual)
TOSM	P1, P2	•				S Repeat
Туре	2	2		=	, f	Scalar Power Cal
Refl Norm Open	Refl Norm Short	Refl OSM	Trans Norm	Trans Norm Both		Cal
5	53				Stop 3 GHz	SMARTerCal
One Path Two Ports	TOSM	UOSM	TRL	том		(Cal Unit)
	11	Ū	Ū			(Manual)
TSM	TRM	TNA	Adapter Removal			Repeat
Source	•			alibrate all Channels	M3	
		Back	Next 🔀	Cancel 😰 Help	kHz -102.4104 dB MHz -121.9748 dB GHz ⁻⁹ -87.2361 ³ dB	
					Stop 3 GHz	

Probe-tip SOLT Cal – cont.

Calibration	Presetting	D DEE Nov	*		X
Connectors a Select con an appro	nd Cal Kits nnector type and ge priate one.	nder for ports. If ne	ecessary, change the	e Cal Kit or load	\$
Ports	P1 🔘 🗖	P3 💿 🗆	P2 🔘	Р4 🔘	
		×		×	
	TOSM	P1, P2			
-			(<u> </u>		
Connector	Probe 🗘		Probe	÷ <mark>/</mark>	
Gender					
Cal Kit	RP15G0.5-70V2 =	J1	RP15G0.5-70V2		
					2
					1
					12
	Same Connector all Ports	r Same Ge all Ports	ender	import Cal Kit	
		🗲 Back	Start	Cancel	Help

 Make sure to use the right .calkit file that is probe pitch dependent.

Load Calibration

Short Calibration

- frequency Good short contact makes phase
- Good short contact makes phase change ~ 180 deg

Open

Make sure that probe tips contact the open pattern.

Thru

Apply Calibration

S21 should be close to a flat line after calibration is applied

Use Thru for calibration verification

 After lifting up and then lowering down the probe tips, S21 should be flat around 0 dB up to 50% of probe bandwidth.

Electronic Calibration

 For many applications, you may be able to use electronic calibration

Electronic Calibration – cont.

Electronic Calibration – cont.

 Both cables are connected to probes that are lifted up in the air. Both cables are left open

Test Cases

PDN DUT – SOLT Calibration

Measurement vs. Simulation

CST Simulation was provided by Yifan Ding of Univ. of Missouri Science & Technology

Measurement vs. Simulation – cont.

PDN DUT – Electronic Calibration

Comparison – PDN DUT

 SOLT calibration is slightly better than electronic calibration.

Copper DUT – SOLT Calibration

Copper DUT – Electronic Calibration

Comparison – Copper DUT

 SOLT calibration is slightly better than electronic calibration.

22-Layer Stratix III Test Board

PI Probing Demo

Measure impedance of 0.9 V core voltage
Probe on C639 and C644

PI Probing Demo

R-Probe & Microprobe Comparison

Impedance Between Bare and Populated Boards

References

Istvan Novak, "Power Integrity: Advanced Design and Characterization"

(http://www.cei.se/media/48264/cei%20europe%20course%2056.pdf)

 Istvan Novak, "Measuring Milliohms and Pico Henrys in Power Distribution Networks"

(http://electrical-

integrity.com/Paper_download_files/DC00_MeasuringMiliohms_slides.pdf)

 Istvan Novak, "PDN Measurements: Reducing Cable-Braid Loop Error"

(http://www.electrical-integrity.com/Quietpower_files/Quietpower-3.pdf)

PacketMicro Product Offering

PacketMicro offers one-stop shopping for your needs in PCB probing and SI analysis.

- Rugged 40/30 GHz probes
- Probe Positioners

- DIY Probe Stations
- Junkosha phase-stable cables
- CSS AITT Signal-Integrity Tool
 - Dino-Lite Microscopes

PacketMicro Customers (of 200+ in 30+ Countries)

Thank You

We help make your probing tasks easy!

- Benchtop DIY Probe Stations
- Rugged 40 GHz Differential Probes
 - Rugged 30 GHz Single-ended Probes
 - Engineering Services
 - Signal Integrity Consulting

Contact:

support@packetmicro.com Office: 408-675-3900 2312 Walsh Avenue, Suite A, Santa Clara, CA 95051, USA